Energy Efficient Design - Addressing Thermal Bridging in Steel Lintels
If buildings are designed to meet Part L regulations and carbon reduction targets, then it is essential specifiers understand the impact of thermal bridging. With a traditional steel lintel potentially creating a major thermal bridge in a building, correct lintel specification can have a significant impact on a building's fabric efficiency.
Ben Cheetham, National Specification Manager at Keystone Lintels, looks at the detailing around junctions and how this important structural element can be designed to be more thermally efficient and with better buildability.
Contents |
[edit] Introduction
Preventing heat loss by addressing thermal bridging is growing in importance; particularly with the UK government aiming to create more energy efficient homes and attain its ultimate goal: carbon-neutrality by 2050. Indeed, research carried out by BRE found that thermal bridging can account for up to 30% of heat loss from buildings.
[edit] Explaining ‘the bridge’
A thermal bridge is a localised area in the thermal envelope of a building where there is increased heat loss compared to the surrounding area. For example, where a traditional steel lintel spans a window or door opening and interrupts the insulation layer in the cavity wall, a clear path for heat to escape is provided and the thermal efficiency is compromised.
Non repeating thermal bridges such as these are assessed using thermal modelling software, and their impacts on the building’s energy performance must be calculated independently in addition to U-values.
[edit] Heat loss and lintels
The majority of lintels in domestic-scale dwellings are made from steel for a number of reasons, such as providing more design flexibility and easier onsite handling due to their lightweight design compared to other alternatives. However, steel has a high conductivity value, and with lintels typically spanning across long lengths in a typical build, it’s no surprise they can have a significant impact on heat loss via thermal bridging. Therefore, taking into account the thermal performance of lintels at design and specification stage is more important than ever.
A lintel design which incorporates a thermal break will outperform and be much more thermally efficient than a standard lintel. For instance, Keystone’s Hi-therm+ lintels use a patented combination of a polymer isolater and galvanised steel to bond the internal and external walls together by spanning the intervening gap. The polymer isolater provides a powerful thermal break in the lintel and virtually eliminates this key thermal bridge.
The Hi-therm Lintel has a low thermal conductivity with a Psi value of 0.03 to 0.06 W/m.K.
[edit] Fabric first
A fabric-first approach has for some time been supported by the housebuilding industry. Its approach factors in a number of aspects such as:
- Having high levels of thermal insulation and excellent air tightness levels.
- Maximising building orientation for solar gains,
- Designing out thermal bridging.
The benefits of this approach as a first step in building design are increasingly widely recognised, and ongoing research continues to reinforce the significant positive impact this approach can have economically, environmentally and socially.
The reduction in CO2 emissions achieved through fabric measures is built-in for the life of the building and therefore can ensure that the energy demand and CO2 emissions of a site remains low.
With junctions above openings in buildings particularly vulnerable to heat loss through thermal bridging, details and structural elements such as lintels help to create energy efficient buildings. Adopting a fabric-first approach in the first instance will help the building continue to perform as-designed and go some way to maximising the overall efficiency of UK homes ensuring they are well positioned for future regulatory changes.
For more information contact Keystone Lintels.
--Keystone LINTELS 15:43, 28 Aug 2020 (BST)
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Mixed reactions to apprenticeship and skills reform 2025
A 'welcome shift' for some and a 'backwards step' for others.
Licensing construction in the UK
As the latest report and proposal to licence builders reaches Parliament.
Building Safety Alliance golden thread guidance
Extensive excel checklist of information with guidance document freely accessible.
Fair Payment Code and other payment initiatives
For fair and late payments, need to work together to add value.
Pre-planning delivery programmes and delay penalties
Proposed for housebuilders in government reform: Speeding Up Build Out.
High street health: converting a building for healthcare uses
The benefits of health centres acting as new anchor sites in the high street.
The Remarkable Pinwill Sisters: from ‘lady woodcarvers’ to professionals. Book review.
Skills gap and investment returns on apprenticeships
ECA welcomes new reports from JTL Training and The Electrotechnical Skills Partnership.
Committee report criticises UK retrofit schemes
CIOB responds to UK’s Energy Security and Net Zero Committee report.
Design and construction industry podcasts
Professional development, practice, the pandemic, platforms and podcasts. Have we missed anything?
C20 Society; Buildings at Risk List 2025
10 more buildings published with updates on the past decade of buildings featured.
Boiler Upgrade Scheme and certifications consultation
Summary of government consultation, closing 11 June 2025.
Deputy editor of AT, Tim Fraser, discusses the newly formed society with its current chair, Chris Halligan MCIAT.
Barratt Lo-E passivhaus standard homes planned enmasse
With an initial 728 Lo-E homes across two sites and many more planned for the future.
Government urged to uphold Warm Homes commitment
ECA and industry bodies write to Government concerning its 13.2 billion Warm Homes manifesto commitment.
From project managers to rising stars, sustainability pioneers and more.
Places of Worship in Britain and Ireland, 1929-1990. Book review.